"The combination of computing networks with semantic metalanguages
    represents a major leap in the history of communication and intelligence."




June 26, 2004

Minding the Planet: From Semantic Web to Global Mind

Draft 1.1 for Review (integrates some fixes from readers)
Nova Spivack (


This article presents some thoughts about the future of intelligence on Earth. In particular, I discuss the similarities between the Internet and the brain, and how I believe the emerging Semantic Web will make this similarity even greater.


The Semantic Web enables the formal communication of a higher level of language -- metalanguage. Metalanguage is language about language -- language that encodes knowledge about how to interpret and use information. Metalanguages – particularly semantic metalanguages for encoding relationships between information and systems of concepts – enable a new layer of communication and processing. The combination of computing networks with semantic metalanguages represents a major leap in the history of communication and intelligence.

The invention of written language long ago changed the economics of communication by making it possible for information to be represented and shared independently of human minds. This made it less costly to develop and spread ideas widely across populations in space and time. Similarly, the emergence of software based on semantic metalanguages will dramatically change the economics not only of information distribution, but of intelligence -- the act of processing and using information.

Semantic metalanguages provide a way to formally express, distribute and share the knowledge necessary to interpret and use information, independently of the human mind. In other words, they make it possible not just to write down and share information, but also to encode and share the background necessary for intelligently making use of that information. Prior to the invention of such a means to share this background knowledge about information, although information could be written and shared, the recipients of such information had to be intelligent and appropriately knowledgeable in advance in order to understand it. Semantic metalanguages remove this restriction by making it possible to distill the knowledge necessary to understand information into a form that can be shared just as easily as the information itself.

The recipients of information – whether humans or software – no longer have to know in advance (or attempt to deduce) how to interpret and use the information; this knowledge is explicitly coded in the metalanguage about the information. This is important for artificial intelligence because it means that expertise for specific domains does not have to be hard-coded into programs anymore -- instead programs simply need to know how to interpret the metalanguage. By adding semantic metalanguage statements to information data becomes “smarter,” and programs can therefore become “thinner.” Once programs can speak this metalanguage they can easily import and use knowledge about any particular domain, if and when needed, so long as that knowledge is expressed in the metalanguage.

In other words, whereas basic written languages simply make raw information portable, semantic metalanguages make knowledge (conceptual systems) and even intelligence (procedures for processing knowledge) about information portable. They make it possible for knowledge and intelligence to be formally expressed, stored digitally, and shared independently of any particular minds or programs. This radically changes the economics of communicating knowledge and of accessing and training intelligence. It makes it possible for intelligence to be more quickly, easily and broadly distributed across time, space and populations of not only humans but also of software programs.

The emergence of standards for sharing semantic metalanguage statements that encode the meaning of information will catalyze a new era of distributed knowledge and intelligence on the Internet. This will effectively “make the Internet smarter.” Not just monolithic expert systems and complex neural networks, but even simple desktop programs and online software agents will begin to have access to a vast decentralized reserve of knowledge and intelligence.

The externalization, standardization and sharing of knowledge and intelligence in this manner, will make it possible for communities of humans and software agents to collaborate on cognition, not just on information. As this happens and becomes increasingly linked into our daily lives and tools, the "network effect" will deliver increasing returns. While today most of the intelligence on Earth still resides within human brains, In the near future, perhaps even within our lifetimes, the vast majority of intelligence will exist outside of human brains on the Semantic Web.


Anyone familiar with the architecture and dynamics of the human nervous system cannot help but notice the striking similarity between the brain and the Internet. But is this similarity more than a coincidence - is the Internet really a brain in its own right - the brain of our planet? And is its collective behavior intelligent - does it constitute a global mind? How might this collective form of intelligence compare to that of an individual human mind, or a group of human minds?

I believe that the Internet (the hardware) is already evolving into a distributed global brain, and its ongoing activity (the software, humans and data) represents the cognitive process of an increasingly intelligent global mind. This global mind is not centrally organized or controlled, rather it is a bottom-up, emergent, self-organizing phenomenon formed from flows of trillions of information-processing events comprised of billions of independent information processors.


Continued at



A Nice Video Intro to The Semantic Web for Non-Geeks

Monday, January 14, 2008, 8:01:21 PM | Nova

Question: What do you do if you're not a computer scientist but you are interested in understanding what all this Semantic Web stuff is about? Answer: Watch this video!